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NONLINEAR ESTIMATION WITH QUANTIZED MEASUREMENTS : 
PCM, PREDICTIVE QUANTIZATION, AND DATA COMPRESSION 

Renwick E. Curry 

ABSTRACT 

Statistics conditioned on quantized measurements are con- 
sidered in the general case. These results are specialized to 
Gaussian parameters and then extended to discrete time linear 
systems. The conditional mean of the system's state vector may 
be found by passing the conditional mean of the measurement 
history through the Kalman Filter that would be used had the 
measurements been linear, Repetitive use of Bayes' Rule is not 
required, Because the implementation of this result requires 
lengthy numerical quadrature, two approximations are considered: 
the first is a power series expansion of the probability de 
function; the second is a discrete time version of a previously 
proposed algorithm which assumes that the conditional distribution 
is normal. Both algorithms may be used with any memory length 
on stationary or nonstationary data. The two algorithms are 
applied to the noiseless channel versions of the PCM, predic- 
tive quantization, and predictive-comparison data compression 
systems; ensemble average performance estimates of the non 
filters are derived. Simulation results show that the performance 
estimates are quite accurate for most of the cases tested. 
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I, INTRODUCTION AND SUMMARY 

The increasing demand on existing digital facilities (e.g., 
communication channels, data storage) can be alleviated by re- 
presenting the same amount of information with fewer bits at the 
expense of more sophisticated data processing, The current in- 
terest in this area [see 11 goes by the various names of "redun- 
dancy reduction", "data compression", and others. Common to the 
great majority of these approaches is the problem of computing 
estimates from quantized data, This paper considers the analysis 
and implementation of nonlinear estimation with quantized measure- 
ments, and these techniques are applied to three types of digital 
systems: PCM, predictive quantization, and predictive-comparison 
data compression. 

Relevant Work 

quantized measurements [2,3,41, and some has been done on the 
general nonlinear filtering problem [ e.g., 5,6,71. Unfortunately, 
these latter treatments require either the repetitive use of Bayes' 
Rule, or the power series expansion of the nonlinear measurement 
function, a technique which is not applicable to the quantizer's 
staircase input-output graph. To the best of the author's know- 
ledge, only Meier, Korsak, and Larson [8] have specifically con- 
sidered nonlinear estimation with quantized measurements. They 
derive some nonlinear estimates including the conditional mean 
and covariance of a scalar state based on one quantized measure- 
ment. The a priori distribution for both scalars is assumed 
Gaussian, and they indicate that subsequent estimates must be 
found by repetitive use of Bayes' Rule since the posterior dis- 
tribution is no longer normal. 

The PCM problem is considered by Ruchkin [21, Steiglitz 
[ 31, and Kellog [4] who use linear filtering to reconstruct the 
system's input. Fine [9] gives a theoretical treatment of opti- 
mum digital systems with an example of predictive quantization 

Much work has been done in the area of linear filtering of 
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(feedback around a binary quantizer). Bello, Lincoln, and Gish 
[ 101 have computed Fine's nonlinear feedback function by 
Carlo techniques and give some simulation results. Gish [ll], 
O'Neal [ 121, and Irwin and O'Neal E131 consider the problem of 
designing linear feedback functions. Predictive-comparison data 
compression systems are in the class of predictive quantization 
systems. In E141 Davisson treats the optimum linear feedback 
operation: in (151 he considers an adaptive system of the same 

type * 

Summary 

graph. Nonlinear estimation uses the information that the quan- 
tized measurements z lie in an hypercube (say) A. In Section II 
it is shown that moments conditioned on quantized measurements 
can be computed in two steps: 1) Find the expectation condi- 
tioned on a measurement z (the usual estimation problem): 2) 
Average this function of z conditioned on zsA,. These results 
are specialized to Gaussian distributions and then extended to 
linear dynamical systems: the conditional mean of the state vec- 
tor is found by passing the conditional mean of the measurement 
history through the Kalman Filter that would be used had the 
measurements been linear. Thus the conditional mean can be com- 
puted without using Bayes' Rule. 

compute the conditional mean of stationary and nonstationary 
data. The first involves a power series expansion to find the 
conditional probability density function. The second is a re- 
cursive computation which approximates the conditional distri- 
bution just prior to a quantized measurement by a norma 
bution. Section IV applies these approximations to the noise- 
less channel versions of the PCM, predictive quanti 
predictive-comparison data compression systems. Th 
systems are designed to minimize the mean square reconstruction 
error,. whereas the data compression system is designed to 

Linear estimation uses the quantizer's staircase input-output 

Section 111 considers two approximate nonlinear filters to 
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minimize (approximately) the average number of samples sent to 
the receiver. Estimates of the ensemble performance are derived 
for each system. This is extremely important in design work since 
it allows evaluation of system performance without Monte Carlo 
simulation 

The three systems have been simulated on a digital computer, 
and the actual performance is compared to the ensemble estimates 
in Section Vi agreement is quite good for most of the cases 
tested, Section VI closes with a summary of the major conclu- 
sions and limitations of the results. 
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11. CONDITIONAL STATISTICS 

Preliminaries 
Let x be an n-component parameter vector and z an m-component 

measurement vector. They are related through a (perhaps nonlinear) 
measurement equation that may or may not include noisy observa- 
tions. It is assumed that the joint probability density func- 

(C,C), exists and is known. Let the indi- tion of x and z ,  

vidual components of z be quantized and thus zGA implies 
:ai<z - <bi, i=l, ..m’j(The majority of the following results do not 
depend on the fact that A is an hypercube.) 

px,z 

i 

Conditional Expectations 

fields and 7,Cy2, then for the random variable y 
It is well known [e.g., 161 that if ,f, and .P are Bore1 2 

For the purposes of estimation with quantized measurements let 
y be f(x), f7i be zSA, .fi be z. 
i.e., the unknown quantity becomes the known quantity, with the 
result that 

The equality (1) is reversed, 

Observe that the expectation of f(x) conditioned on quantized 
measurements can be performed in two steps: 1) Find E(f(x)\z), 
this is the usual goal of estimation with unquantized measure- 
ments; 2) Find the expectation of E(f(x)\z) conditioned on zSA. 
For step 2 one must use the probability density function for 
z conditioned on ZCA. 
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where p ( c )  is the a priori probability density of the measure- 
ment vector. 

2 

Gaussian Parameters 

with mean and covariance M: N[G,M]. Let the measurements be 
linearly related to x with additive independent observation 
noise . 

Let the distribution of the parameter vector x be normal 

f(x) = x. The results of executing the 
cedure are well known. 

& (X 12) = G+K[ z-H~] 

where 

K = MH~(HME-I~+R)-~ 

z = Hx+v (4) 

where H is an mxn matrix and v is the noise vector N[O,R]. 
To find the mean of x conditioned on quantized measurements let 

first step in the pro- 

( 5 )  

(6 1 

The second step in the procedure is to ,ake the expectation of 
(5) conditioned on z€A to find the mean of x conditioned on zm. 

&(XIZGA) = 2 + K[E(Z\Z~A)-Hx] (7) 

It is easily shown E171 that the covariance in the estimate 
conditioned on zsA is given by 

where P is the covariance of x that would be obtained had the 
measurements been linear: 

Both the conditional mean and covariance reduce to the pro- 
per form when the measurements are unquantized since the proba- 
bility density function of z conditioned on zEA approaches an 
impulse, Note the importance in the nonlinear estimate (7) of 
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the gain matrix K which is used to weight linear measurements. 
Interestingly enough, (8) shows that quantization increases the 
(minimum) variance as though it were uncertainty added after a 
linear measurement had been processed. This is in sharp distinc- 
tion to the point of view that treats quantization as observation 
noise added before the linear measurement. 

Extension to Linear Dynamic Systems 
Assume that a Gauss-Markov process is described by the 

following 

where 
x =  i 

- Qi - 
w =  i 

i z =  

Hi - 
v =  i 

equations : 

= *ixi xi+l 

z = H.x. + i 1 1  
i=1, ..., K V i 

E(w.v.T) = E(WiXO T, = €(ViXOT) = 0 
1 3  

system state vector at time ti 

system transition matrix from time ti to ti+l 

Gaussian process noise at time t 

measurement vector at time ti 

measurement matrix at time ti 

Gaussian observation noise at time t 

i 

i 

Filtering, as used here, means the determination of the 
conditional mean of a state vector using present and past quantized 
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measurements; prediction is the determination of the conditional 
mean of a state vector using only past quantized measurements: 
smoothing is the determination of the conditional mean of a state 
vector using past, present, and future quantized measurements. 
(A "future" measurement occurs at a time later than the state 
vector in question.) 

the solution to the Gaussian parameter estimation problem con- 
sidered earlier since the a priori distribution of all random 
variables is normal. 

The solution to these three problems can be found by using 

1) Let x be the state vector(s) under consideration. 
Let z be the collection of all measurement vectors, 
and let A be the region in which they fall. 

2) Compute the mean of z conditioned on zGA. 

3) Solve (7) for the mean of the state vector(s) 
conditioned on zSA. 

Remarks 
a) The prediction solution is directly obtained from the 

filtering solution because of the independence of the process 
noise vectors EwJ, i.e. from (10) 

'i+n-l G i+n-2 . e Qi€ (xi 1 zi €Ai, zi -1 "Ai-l, . . ) 

only the conditional mean of the state vector is considered in 
the sequel since the mean of a linear function of the state is 
the same linear function of the mean. 

b) Eq. (7) now represents the "batch processing" solution 
to the estimation problem. These equations may be solved 
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recursively via the Kalman Filter using E(zi)zEA) as the filter 
input at time ti. 
are required for the smoothing problem [ 181 ,) 

c) This formulation yields the conditional mean of the state 
vector for nonstationary data and arbitrary quantization schemes. 
Note that repeated use of Bayes' Rule is not required. 

d) If z is a scalar N [ ~ , G ~ ~ ] ,  and A is defined byCz\a<z<b], - 

then &(z\zcA) and cov(zlzsA) are given by 

(Additional computations on these filter inputs 

where 

1 2  
cf 

- - Y  z 
e 2  

dv - 
P ( z E A )  = +m 

For two or more components numerical quadrature is required to 
obtain a precise computation of E(zlz€A). 
culties, this approach does provide one common point of depar- 
ture for design purposes, and approximations can be made which 
depend on the specific method of quantization. 

Despite these diffi- 
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111. APPROXIMATE NONLINEAR ESTIMATION 

- Power Series Expansion 

mean and covariance of an m-component zero mean Gaussian vector 
conditioned on quantized measurements. Its use is restricted to 
cases where the quantum-interval-to-standard-deviation ratio is 
small since fourth and higher order terms are neglected. 

Here we describe a power series method to approximate the 

Let the vector inequality define the quantum region A 

r i  i i i.e. ~a Lz <b , i=l, ..., m]. 
vector y 

The geometric center of A is the 

(20) 
1 
2 y = - (b+a) 

and the vector of quantum interval halfwidths is [ai]. 

1 
2 a = - (b-a) 

The Gaussian probability density function is expanded in a power 
series about y and fourth and higher order terms are neglected. 
The details of this straightforward but lengthy procedure have 
been carried out in [17] with the result that 

where r = E ( Z Z  T 1 

The conditional mean is given by the geometric center of A plus 
a second order correction term. This approximation, given by 
(22), looks deceptively linear, but it is nonlinear because both 
y and a are part of the measurement. Both (22) and (23) may be 
used in ( 7 )  and (8) to give estimates of the mean and covariance 

11 



of x conditioned on quantized measurements, 

The Gaussian Fit Algorithm 
The Gaussian Fit Algorithm is the present author's name for 

the discrete time version of a suboptimal filtering algorithm 
suggested independently by Jazwinski 1191, Bass and Schwartz [ 203, 
and, apparently, by Fisher [211. Here we present some heuristic 
justification for the technique and derive (in the Appendix) an 
ensemble average performance estimate even for nonstationary 
data. 

Consider the system described by (10-15) and assume that 

Al: The conditional distribution of the state just 
prior to the ith measurement is NIGili - l,Mi] 

Then we know from Section I1 and (10-15) that 

T -1 Ki=MiHi (H.M.H. 3-13, ) 1 1 1  1 

T E.=P.+K.COV(Z. 12. €A.  )K 
1 1 1  i i i i  

A A 
X =a. x i+lli 1 ili 

Mi+l=@. E. 6.. T +Qi 
1 1 1  

where the newly introduced symbols are 

= conditional mean (under Al) of xi given quantized A 
X i li 

measurements up to and including.ti. 
A = conditional mean (under Al) of xi given quantized xi \i-1 

measurements up to and including timl 

3: quantum region for zi Ai 
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Mi = conditional covariance (under Al) of x. given quantized 
1 

measurements up to and including t i-1 
Ki = Kalman Filter gain matrix at t i 
Pi = conditional covariance (under Al) of estimate had the 

ith measurement been linear 

Ei = conditional covariance (under Al) of xi given quantized 
measurements up to and including ti 

Under assumption A1 (28) and (29)  correctly describe the 
propogation of the first two moments of the conditional distri- 
bution although it is no longer Gaussian. The Gaussian Fit 
Algorithm assumes that A1 is again true at time t 
"fits" a Gaussian distribution to the moments given by (28) and 
(29 ) .  To give some justification for this procedure, let e=x-G 
and subtract (28) from (10) 

i.e., it i+l' 

e i+lli =4 i e ili +w i (30) 

Since eili is not Gaussian, e i+l li is not Gaussian either, 
although ei+l I 
the majority of cases because of the addition of Gaussian process 
noise wil and the mixing of the components of e 
transition matrix. 

should tend toward a Gaussian distribution in 

by the state it i 

Because assumption A1 is not exact, the Gaussian Fit Algorithm 
described by the recursion relations (24-29) yields only approxi- 
mations to the conditional moments. These recursion relations 
are very much like the Kalman Filter with two important differences: 

1) The conditional mean of the measurement vector at 
This conditional ti is used as the filter input. 

mean is computed on the assumption that the distri- - 

T bution of the measurement is NIHiGiii-l , H . M . H .  +€ti] 

2) The conditional covariance equation (27) is being 
forced by the random variable cov(zilzi~Ai). 
general there is no steady state mean square error 

In 
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for stationary input processes, and the filter 
weights are "random" until the previous measure- 
ment has been taken. 

The primary advantages of the Gaussian Fit Algorithm are 
that 1) it is relatively easy to compute; 2) it can handle non- 
stationary data as easily as stationary data; and 3)  its general 
operation is independent of the quantization scheme used. The 
primary disadvantages are that first, it requires more computa- 
tion than the optimum linear filter and, second, it can be ap- 
plied with some justification only to Gauss-Markov processes. 

A recursive smoothing algorithm, which combines the out- 
put of two Gaussian Fit filters, is described in [17]. 
the Gaussian Fit Algorithm itself, the use of the smoothing 
technique is not limited to quantized measurements, but may be 
used with other nonlinearities. 

Like 

Ensemble Averase Performance Estimate for the Gaussian Fit 
Alqorithm 
The difficulty in analyzing the ensemble average performance 

of the Gaussian Fit Algorithm arises because the filter weights 
are random variables since they are functions of past measure- 
ments. Although one result of the filter computations is an 
approximation to the conditional covariance, this is not the 
ensemble covariance which is obtained by averaging over all 
possible measurement sequences. (For linear measurements, how- 
ever, these two covariances are the same.) Approximate perfor- 
mance estimates are derived in the Appendix for the three systems 
considered in the next Section. 
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IV, PCM, PREDICTIVE QUANTIZATION, 
AND DATA COMPRES$ION 

PCM 
The noiseless channel version of the PCM problem is shown 

9 
in Fig. 1. Note that the quantizer output is the interval A 
in which the sample zn falls. 

When the quantum intervals are small enough, the conditional 
mean receiver for Gaussian variables is of the form ( 7 )  with the 
conditional mean of the measurement history (approximately) given 
by (22). In these equations z is that portion of czn! upon which 
the estimate is based. 

If [zn]. is given by (10-15) the Gaussian Fit Algorithm may 
be applied in a straightforward manner to approximate the con- 
ditional mean receiver for the filtering and prediction problems, 
The smoothing problem is more complex and is considered in [17]. 

An estimate of the enserrible performance of the Gaussian Fit 
Algorithm in the PCM mode is given in the Appendix. 

Predictive Quantization 

System Description - Fig. 2 shows the noiseless channel 
version of the predictive quantization problem for a mean square 
error criterion. This system configuration is not as general 
as the one considered by Fine E91 since the quantizer is time 
invariant. The scalar random process izn] is assumed to be the 
output of a system described by (10-15). The N-level quantizer 
is chosen beforehand, but is fixed once the system is in opera- 
tion. 
tracted from the incoming sample zn to minimize the mean square 
reconstruction error. 
of the quantizer are considered next. 

The scalar feedback function Ln(An-1,An-2,...) is sub- 

The determination of Ln and the design 

System Optimization - Fine 191 outlines the system design 
procedure in three steps: 1) find the optimum receiver for a 
given transmitter; 2 )  find the optimum transmitter for a given 
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receiver: 3) solve the simultaneous conditions of 1) and 2) for 
the optimum system. These are necessary, but not sufficient 
conditions [9I Here we have already performed step 1) for the 
quadratic criterion since the conditional mean receiver is indi- 
cated in Fig. 2. Step 2) and step 3) are performed by choosing 
the optimum feedback quantity, Ln , such that 

- > o  (31) 
where cov (xn[*) is the conditional covariance of the estimate, 
and the matrix inequality of (31) implies that the left-hand 
side is positive semidefinite. 
sures a minimum variance estimate for any linear combination 
of the state variables. 

Choosing Ln in this manner as- 

An approximate solution to (31) can be found with the aid 
of the Gaussian Fit Algorithm. Under this assumption, the con- 
ditional moments are given in recursive form by (24-29), and the 
conditional covariance by (27) with the index i replaced by n. 
Let the quantized variable be un (Fig. 2), and furthermore let 

= Zn-Ln (An-l 0 un 

0 = z -L 0 (An-l, 0 0 0 )  

un n n  

Note that in (27) we may use cov(unI*) in place of cov(znl*) 
since the two differ only by the constant Ln. 
intervals are denoted by {Aj, j=l, . . , ,N], then substituting (27) 
into (31) and simplifying produces the scalar equation 

If the N quantum 

N 
j j 

N 
C cov(~~lu,€A )P(unCA ) -  c COV(U, 
j=l j=l 

(33)  

where these quantities are computed by (17) and (18) under the 
assumption that zn (hence u and uno) are normally distributed. n 
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BY symmetry arguments it can be concluded that for a well desiqned 
quantizer Ln 0 should be the (approximate)conditional mean of zn, 

If, however, the conditional standard deviation of the prediction 
of zn is very much smaller than the quantum interval widths, then 
the quantizer appears to be N-1 binary quantizers placed end to 
end. 
of uno at one of these quantizer switch points. 
design problem is considered in more detail in the Appendix. 

In this case Lno will probably be chosen to place the mean 
The quantizer 

Comwtation of L - It will be assumed that the quantum in- 
tervals are small enough so that the optimum choice of L, is the 
conditional mean of zn based on measurements at Ctn-l,tn-2,...]. 
The feedback function Ln may be based on a limited memory or a 
growing memory. The application of the Gaussian Fit Algorithm 
to the limited memory case is lengthy and will not be considered 
at this time. 

The feedback function for the growing memory version uses the 
Gaussian Fit Algorithm on stationary or nonstationary processes 
from the first measurement to the most recent. Although the 
memory is increasing, the storase required to implement (24-29) 
remains constant. One of the great advantages of the Gaussian 
Fit Algorithm is that its operation is determined by the para- 
meters of the input process, and it is not an iterively deter- 
mined function as are most feedback operations of this type. 
The ensemble mean square error of this system is described in 
the Appendix. 

There is one special case where the operation of the Gaussian 
Fit Algorithm becomes stationary and the feedback function and 
receiver become linear. When a binary quantizer is used, the 
filter weights as given by (25-27, 29) are predetermined func- 
tions of time because cov(zi 1 .) does not depend on the measure- 
ments. For a stationary input process the filter weights will 
approach a constant as more measurements are incorporated. 
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From (17), (24), (25), (28) and (34), the state space form of the 
stationary equations is 

A A A 

xn 1 n= xn 1 n-l+Kwrn 

( s 2 = H M H + R  T 
m 

zCO 

T K = M m H (HM CO H~+R)-' 
03 

(39)  

where MW is the steady state solution to the covariance equations 
(26,27,29) 

- Data Compression 

System Description - Fig. 3 shows the block diagram of the 
predictive-comparison type of data compression system. The 
analysis contained here is concerned only with the prediction and 
filtering aspects, and such important problems as buffer control, 
timing information, and channel noise are not considered. 

The threshold device in Fig. 3 is a quantizer (one large 
quantum interval, many small quantum intervals), and the linear 
slope indicates that quantization during encoding can be neglec- 
ted. The quantizer output is fed back through Ln(An - l,,.*) and 
subtracted from the input zn, 
\unl, is less that a (a known parameter) then nothing is sent to 
the receiver; if Iun\ > a, then un is sent to the receiver. 
the receiver does a parallel computation of Ln(An - 
the system input zn is calculated by adding un and Ln. The 

If the magnitude of the difference, 

If 
then 
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e s t i m a t e  of zn when un i s  n o t  s e n t  may be performed under a 
v a r i e t y  of c r i t e r i a ;  i n  a l l  ca ses  t h e  e r r o r  i n  t he  e s t i m a t e  i s  
known t o  be less t han  a. 

System Optimizat ion - The c r i t e r i o n  f o r  t h e  optimum system 
considered here w i l l  no t  con ta in  da ta  f i d e l i t y  s i n c e  t h i s  can be 

c o n t r o l l e d  through the  choice of t h e  th re sho ld  w i d t h .  I n s t e a d ,  
L,(A,-,, ...) i s  chosen s o l e l y  on t h e  basis t h a t  i t  s h a l l  mini- 
mize the ( c o n d i t i o n a l )  p r o b a b i l i t y  t h a t  un i s  s e n t  t o  t h e  re- 
c e i v e r .  This  i s  n o t  n e c e s s a r i l y  t h e  same a s  minimizing the  

average number of samples s e n t  o u t  of t h e  t o t a l  number processed.  
This  l a t t e r  problem may be formulated a s  an opt imal  s t o c h a s t i c  
c o n t r o l  problem r e q u i r i n g  a dynamic programming approach. The 

s o l u t i o n  would h a r d l y  be worth t h e  e f f o r t .  

L e t  yn-1=Czn-1,zn-2'zn-3,. 
determining Ln, and l e t  
which they  f a l l .  Then t h e  p r o b a b i l i t y  of r e j e c t i n g  (no t  sending)  
t h e  n t h  sample is 

The necessary  equa t ions  for o p t i m a l i t y  a r e  t r e a t e d  n e x t ,  
be the measurements used i n . .  
[An-1,An-2, .I be the  r eg ion  i n  

where 

The necessary  cond i t ion  t h a t  t h e  p r o b a b i l i t y  of r e j e c t i o n  be 

s t a t i o n a r y  w i t h  r e s p e c t  t o  Ln a t  Ln 
0 i s  
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or, substituting (42) into (43) provides 

The above expression (44) does not require that ,:z !be derived 
from a MarkQv process. TS the threshold halfwidth a is small 
snaqgh, (44) can be solved by power series approximations. 
Neglecting terms of third and higher order it may be verified 
that (44) reduces to 

n) 

i 

n ‘ L  

where Y n - l  is the colleckion of midpoints of the quantum inter- 
v a l s  (An-l,An-Z, ....I Note that (45) is equivalent to 

= O  (46 1 

which means that, to the second order approximation, the optimum 
Ln is the mode of the density function of zn conditioned on un- 
quantized measurements y 

then the conditional mode is the conditional mean and Ln 
linear operation. 

If {zn3 are  Gaussian random variables, 
0 

n-1 
is a 

When t h e  fz,j process is generated by (10-15), the  Gaussian F i t  

Algorithm may be used in the feedback path for arbitrarily wide 
thresholds, Regardless of the number of samples that have been 
rejected or sent, the distribution of zn conditioned on quantized 
measurements at times 
conditional probability of rejecting zn is maximized by choosing 

Ln 

tn-l , . . .3 is assumed to be normal. The 

A 
to be the (approximate) conditional mean, Hnxninml. 

2 0  



n 

0 The feedback f u n c t i o n  Ln = E ( z ~ \ A ~ - ~ ,  . .) is computed wi th  t h e  
Gaussian F i t  Algorithm. Observe t h a t  &(zn\znEAn) is j u s t  Ln if 
t h e  sample f a l l s  w i t h i n  t h e  th re sho ld  and i s  zn i f  t h e  sample i s  
n o t  quan t i zed .  The ensemble performance e s t i m a t e  of t h e  s y s t e m  

us ing  t h e  Gaussian F i t  Algorithm i s  der ived  i n  t h e  Appendix. 

M 
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V. SIMULATION RESULTS 

This section describes the results of digital computer simu- 
lations o f  the Gaussian Fit Algorithm as applied to the PCM, pre- 
dictive quantization, and data compression systems described in 
Section IV. Bello, Lincoln, and Gish 1101 present simulation 
results for predictive quantization with a binary quantizer. 
Their approach is a numerical approximation (by Monte Carlo tech- 
niques) to the optimum feedback function, whereas an analytical 
approximation (the Gaussian Fit Algorithm) is used here. They 
consider various memory lengths and a binary quantizer, and here 
we use a growing memory (finite storage) and arbitrary quantizers, 
Although the Gaussian Fit Algorithm and its performance estimate 
may be used on nonstationary data, only stationary data have 
been simulated as yet. 

Simulation Description 

Input Process-- The simulated second order Gauss-Markov in- 
put process is the sampled output of a linear system driven by 
Gaussian white noise, The transfer function of the shaping fil- 
ter is the same as used in [lo] 

2 H ( s )  = 
(1+7s) 

(47 1 

where the gain c is chosen to provide the proper variance at the 
output. Observation noise was not used here, but is considered 
in [17I. Thus the autocorrelation of the input process is 

where 

r = 7/T = number of samples per time constant 7 
T = time between samples 

Error Measurement - Each system was simulated by operating 
on 5000 consecutive samples. The estimation errors were 
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squared and averaged t o  g i v e  an e s t i m a t e  of t h e  ensemble mean 
square e r r o r  o f  t h e  s y s t e m ,  The a u t o c o r r e l a t i o n s  of the  e s t i -  
mation e r r o r s  were measured and from t h i s  t he  confidence l i m i t s  
have been assessed  a s  being  g r e a t e r  than a 90 pe rcen t  p r o b a b i l i t y  
t h a t  t h e  measured e r r o r  va r i ance  l i es  w i t h i n  10  pe rcen t  of  i t s  
t r u e  va lue .  

PCM and P r e d i c t i v e  Q u a n t i z a t i o n  
F ig .  4 d i s p l a y s  t h e  r a t i o  of s i g n a l  var iance  t o  ensemble 

mean square e s t i m a t i o n  e r r o r  (expressed i n  decibels) a s  a func- 
t i o n  of t h e  number of q u a n t i z e r  quantum i n t e r v a l s .  Both t h e  PCM 

and p r e d i c t i v e  q u a n t i z a t i o n  systems a r e  shown wi th  the  i n p u t  pro- 
cess parameter r=2.5.  The l i n e s  a r e  the  performance e s t i m a t e s  
( a s  der ived  i n  the  Appendix) and t h e  d a t a  p o i n t s  a r e  the  sirnulation 
r e s u l t s .  The p r e d i c t i v e  q u a n t i z a t i o n  s y s t e m  performs s i g n i f i -  
c a n t l y  better than the  PCM system, a s  i s  t o  be expeated.  The 
performance e s t i m a t e  i s  q u i t e  a c c u r a t e  except  fo r  PCM wi th  a 
s m a l l  number of quantum i n t e r v a l s  ( less than 5 ) .  Here t h e  e s t i -  
mate i s  o p t i m i s t i c ,  a c h a r a c t e r i s t i c  t h a t  has  been noted i n  o t h e r  
s imula t ions  [ 171 . The q u a n t i z e r  quantum i n t e r v a l s  have been 
chosen t o  minimize t h e  ensemble mean square e r r o r  (see Appendix). 

F i g ,  5 shaws how t h e  p r e d i c t i v e  q u a n t i z a t i o n  system wi th  a 
b i n a r y  quan t i ze r  r e a c t s  t o  d i f f e r e n t  s i g n a l  c o r r e l a t i o n s .  The 
performance e s t i m a t e  and the  s imula t ion  r e s u l t s  a r e  exh ib i t ed  
a s  a func t ion  of t h e  inpu t  p rocess  parameter r .  (As a p o i n t  Qf 
r e f e r e n c e ,  t h e  a d j a c e n t  sample c o r r e l a t i o n  i s  0.736 f o r  r=1; 
0.938 f o r  r=2,5: 0.9988 f o r  r=20.) Again, t h e  performance e s t i -  
mate i s  q u i t e  a c c u r a t e .  

n a t a  Compression 
F ig .  6 c o n t a i n s  t h e  outcomes f o r  t h e  predict ive-comparison 

d a t a  compression system. Performance e s t i m a t e s  and s imula t ion  
r e s u l t s  of t h e  mean square e r r o r  and sample compression r a t i o  
a r e  shown a s  a func t ion  of  ( a / a  a ) ,  t h e  r a t i o  of th reshold  h a l f -  

Z 
width t o  a p r i o r i  s tandard  d e v i a t i o n .  Note t h e  e x c e l l e n t  agree- 
ment between performance e s t i m a t e s  and s imula t ion  r e s u l t s .  
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VI. CONCLUSIONS 

Expectations conditioned on quantized measurements ( z s A )  

can be found in two steps: 1) Find the expectation conditioned 
on z ;  2) Average this (conditional) expectation conditioned on 
z € A .  When applied to discrete time linear-Gaussian systems, it 
was shown that the conditional mean of the system's state vector 
can be found without Bayes' Rule by passing the conditional mean 
of the measurement history through the Kalman filter, This re- 
sult provides one common point of departure for system design. 

variables. The first uses a power series expansion and neglects 
fourth and higher order powers of the quantum-interval-to- 
standard-deviation ratio. The second approach, called the 
Gaussian Fit Algorithm, assumes that the conditional distribu- 
tion is normal. It is a recursive computation for arbitrarily 
wide quantum intervals, but is limited to nth order Gauss-Markov 
processes. 

Two nonlinear approximations are considered for Gaussian 

The approximations are applied to the noiseless channel 
versions of three digital systems: PCM, predictive quantization, 
and predictive-comparison data compression. Both methods can 
be used on stationary and nonstationary data, and can be used in 
the feedback path without additional calculations e.g,, Monte 
Carlo. The Gaussian Fit Algorithm uses a growing memory (but 
finite storage) for these computations. Estimates of the en- 
semble mean square reconstructicm error are derived for the 
Gaussian Fit Algorithm when used in each of the three systems. 
Simulation results indicate that these ensemble performance 
estimates are quite accurate (except for very coarse PCM), so 
that parametric studies with Monte Carlo techniques are not re- 
quired to evaluate the system's ensemble mean square error. 
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APPENDIX 

PERFORMANCE ESTIMATES FOR THE 
GAUSSIAN FIT ALGORITHM 

This Appendix considers the performance of the Gaussian Fit 
Algorithm over the ensemble of time functions for which it is 
intended. An approximation to the ensemble mean square error 
is found for stationary and nonstationary data, and the analysis 
is applied to the three digital systems of Section IV. 

General Form of the Performance Estimate 

The Gaussian hypothesis for the Gaussian Fit Algorithm is 
assumed so that (24-29) describe the propagation of the first 
two moments. The ensemble average covariance is found by 
averaging the conditional covariance over all possible measure- 
ment sequences. Consider Mn+l, the conditional covariance just 
prior to the measurement at tn+l. From (25-27) it is seen that 
(29) can be written 

where the conditional mean and covariance of zn just prior to 
the reading at t, are explicitly shown in cov(zn\ 0 ) .  Let Mnql 
be the ensemble average of Mn+l and formally take the ensemble 
expectation of both sides of (A.l) 

Here p(~,) is the ensemble probability density function for the 
matrix M,, and the matrix W(Mn) is 
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The form of W ( M n )  depends on the  q u a n t i z a t i o n  scheme and e x p l i c i t  
forms a r e  given below f o r  t h r e e  t y p e s  of d i g i t a l  systems,  
The c a s e  of a s c a l a r  zn i s  of s p e c i a l  i n t e r e s t .  L e t  
{A j ,j=lr...rN] denote  t h e  N quantum i n t e r v a l s ,  and l e t  

o * = H , M , H ~ ~ + R ~  
'n 

Then t h e  expres s ion  for the  s c a l a r  W ( M n )  becomes 

( A . 5 )  

Regardless  of t h e  form of W ( M n ) ,  an approximate s o l u t i o n  
t o  (A.2) can be found by expanding t h e  right-hand s i d e  i n  a 
Taylor series about  the ensemble mean, Mn, and neg lec t ing  second 
and h igher  o rde r  terms. This  w i l l  be an a c c u r a t e  s o l u t i o n  when 
t h e r e  is small  p r o b a b i l i t y  t h a t  Mn i s  
i n  t h e  equat ion  

* 

* 
"far" from Mn and r e s u l t s  

w i t h  * 
M1 = 6;oPoCfOT+Q0 

By s i m i l a r  reasoning  t h e  ensemble average covar 
t h e  (n+ l )  st measurement, 

* 
i s  g iven  b y  En+l' 

ance , u s t  a ter  

c 

Computation of W(M*) - The e s t i m a t e  of t h e  ensemble mean 

28 



. 

square error of the Gaussian Fit Algorithm in the PCM mode is 
determined by ( A . 6 )  with W(M) determined as follows. Dropping 
the subscripts, let the N quantum intervals !A]] be defined by 
the boundaries fd ,j=ll,. .N+ljl that is j ? 

A quantizer distortion function is defined for a Gaussian 
variable and a particular quantizer 

where the conditional covariance and probability are evaluated 
by (17) and (18). This distortion function is the normalized 
minimum mean square error in reconstructing the quantizer input. 
Substituting (A.9) into ( A . 5 )  provides 

An approximation to the ensemble statistics of z conditioned on 
M will be considered next. Let % be the mean of the state con- 
ditioned on past data Z .  Then from (A.4) 

-2 --T T z =HxxH 
(A.11) 

T T I Z )  -COV (X lz) ]H = H[& (XX 

The ensemble average of z is zero (or can be made zero by change 
of variable) so that averaging (A.11) over all possible measure- 
ments Z yields the variance of z^, 0; 

2' 
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where Ma i s  t h e  a p r i o r i  covar iance  of  t h e  p r o c e s s  and 

a T  a ) 2  = HM H +R (a z 

( O z * ) 2  = HM*HT+~ 

(€1.13) 

NOW it i s  assumed t h a t  t h e  d i s t r i b u t i o n  of z i s  close t o  

~ [ o , o -  3 
and t h e  d e s i r e d  r e s u l t  i s  

2 ( t h i s  i s  s t r i c t l y  t rue  when the  measurements are l i n e a r ) ,  
Z 

where t h e  subsc r ip t ed  s tandard  d e v i a t i o n s  a r e  found from sub- 
s c r i p t e d  v e r s i o n s  of  ( A . 1 2 )  or ( A . 1 3 ) .  Although f u r t h e r  approx- 
ima t ions  can be made t o  (A.14) it can be eva lua ted  q u i t e  e a s i l y  
by numerical  quadra tu re .  

The r e c u r s i v e  r e l a t i o n s  ( A . 6 )  and ( A . 7 )  may be used wi th  
( A . 1 4 )  t o  Qbtain an approximate e s t i m a t e  of t h e  ensemble mean 
square e r r o r  f o r  nons t a t iona ry  d a t a .  
becomes an approximation t o  t h e  ensemble covar iance  of e s t i m a t i o n  
e r r o r s  us ing  an e s t i m a t e  based on M measurements. When M i s  very 
l a r g e  and E$+l 2: E *, t h i s  becomes the performance e s t i m a t e  f o r  
t h e  i n f i n i t e  memory e s t i m a t o r .  

For s t a t i o n a r y  d a t a ,  EM* 

M 

The Optimum Quan t i ze r  - For three o r  more quantum l e v e l s ,  
f' i ?  t h e  q u a n t i z e r  parameters  c d  j may be chosen t o  minimize t h e  en- 

semble covar iance  EM*. 
was found for s t a t i o n a r y  processes t h a t  Em* i s  r e l a t i v e l y  i n -  
s e n s i t i v e  t o  changes i n  ,d J i f  t h e  q u a n t i z e r  i s  optimized f o r  
t h e  a p r i o r i  va r i ance  ( c r z a ) 2 .  The i n s e n s i t i v i t y  i s  caused by 
two csmpeting f a c t o r s :  1) t h e  f i l t e r i n g  a c t i o n  reduces t h e  va r i ance  
implying t h a t  t h e  quantum i n t e r v a l s  should be reduced; 2)  but from 
( A . 1 2 )  a smaller bz* means a l a r g e r  va r i ance  of the  c o n d i t i o n a l  mean 

and t h e  quantum i n t e r v a l s  should be increased  t o  i n s u r e  e f f i c i e n t  

This  i s  considered i n  [ 1 7 ] ,  where it 

f i? 
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quantization when z is away from zero. 
Predictive Quantization 

As with the PCM system, an estimate of the ensemble average 
mean square error is generated by the recursive solution of ( A . 6 )  

and (A.7) with a different form for W(Mn*). 
back function Ln is the mean of z 
menks, 
function given by (A.9). 

un 
same.) Consequently, W(Mn*) for the predictive quantization 
becomes 

Recall that the feed- 
conditioned on all past measure- n 

This has the effect of setting z=O in the distortion 

and zn differ only by a constant so their covariances are the 
(Actually, un is being quantized, but 

(A.15) 

Now ( A . 6 ) ,  ( A . 7 )  and (A.15) describe the estimates of the ensemble 
covariance for the growing memory predictive quantization scheme. 

The quantizer design for a stationary input may be performed 

* 2  
as follows. Temporarily assume that the quantizer is time varying, 
and choose the parameters [di]at time tn to be optimum for (azI1) 

) becomes D (N), the minimum distortion for a unit Now D ( 0 ,  - 
variance, zero mean Gaussian variable, and it is a function only 
of the number of quantum levels N. 
of (ailand D (N) .) With this time varying quantizer, W(Mn*) 
becomes 

g %-; 
(See Max 1221 for tabulations 

53 

( A . 1 6 )  

A s  n approaches infinity the ensemble covariance and thus the 
quantizer parameters approach a constant. This final quantizer 
minimizes the ensemble covariance because using any distortion 
other than D (N) yields a larger solution to the Riccati equation. 

4 

Data Compression 
The W(M) function for the data compression system is identi- 

cal to predictive quantization except that there is only one 
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quantum interval (of halfwidth a) in the distortion function. 
Substituting (17) and (18) into ( A . 1 5 )  

Equations ( A . 6 ) ,  ( A . 7 )  and ( A . 1 7 )  describe an approximation * 
to the ensemble covariance, and M is the steady state ensemble 
covariance of the prediction error. The sample compression ratio, 
CR, is a common figure of merit for data compression systems; it 
is the ratio of the number of input samples to the number of 
transmitted samples. For the system considered here it is 

W 

( A . 1 8 )  
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t i m e  constont of process 
r -  = 2.5 I sampling interval 

0)) ,‘ A 
/’ 

5 ’  c PREDICTIVE QUANTIZATION 

- PERFORMANCE ESTIMATE 
0 SIMULATION 

PCM 
0-1- PERFORMANCE ESTIMATE 

SIMULATION 

I I I I I 

NUMBER OF QUANTIZER QUANTUM INTERVALS N 

0 

Fig. 4 SNR for  the Gaussian Fit Algorithm, PCM and predictive 

quantization (r = 2.5). 
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